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Abstract

Adult T-cell leukemia (ATL) is a fatal T-cell malignancy

that arises long after infection with human T-cell

leukemia virus type I (HTLV-I). We reported previously

that nuclear factor-KB (NF-KB) was constitutively

activated in ATL cells, although expression of the viral

proteins was barely detectable, including Tax, which

was known to persistently activate NF-KB. Here we

demonstrate that ATL cells that do not express

detectable Tax protein exhibit constitutive IKB kinase

(IKK) activity. Transfection studies revealed that a

dominant-negative form of IKK1, and not of IKK2 or

NF-KB essential modulator (NEMO), suppressed con-

stitutive NF-KB activity in ATL cells. This IKK activity

was accompanied by elevated expression of p52,

suggesting that the recently described noncanonical

pathway of NF-KB activation operates in ATL cells. We

finally show that specific inhibition of NF-KB by

a super-repressor form of IKBA (SR-IKBA) in HTLV-I–

infected T cells results in cell death regardless of Tax

expression, providing definitive evidence of an essen-

tial role for NF-KB in the survival of ATL cells. In

conclusion, the IKK complex is constitutively activated

in ATL cells through a cellular mechanism distinct

from that of Tax-mediated IKK activation. Further

elucidation of this cellular mechanism should contrib-

ute to establishing a rationale for treatment of ATL.
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Introduction

Human T-cell leukemia virus type I (HTLV-I) is etiologi-

cally associated with the development of an aggressive

and fatal malignancy of CD4+ T lymphocytes called adult

T-cell leukemia (ATL) and a variety of inflammatory

disorders, including HTLV-I–associated myelopathy/tropi-

cal spastic paraparesis (HAM/TSP), arthropathy, alveoli-

tis, myositis, and uveitis [1–9]. Because there is a long

latency period until the onset of diseases and a relatively

low incidence of developing ATL after HTLV-I infection,

leukemogenesis by HTLV-I has been thought to represent a

multistep process [10].

Given its well-characterized oncogenic potential, Tax re-

mains the focus of efforts to understand the mechanism by

which HTLV-I transforms human T lymphocytes. Tax trans-

activates not only the HTLV-I long terminal repeat (LTR), but

also transactivates or transrepresses the expression or func-

tions of a wide array of cellular genes, including those for

cytokines [11,12] and regulators of the cell cycle [13,14], DNA

repair [15], or apoptosis [16,17]. Aberrant expression of these

growth-related genes has been supposed to contribute to the

establishment of the HTLV-I–associated proliferative disorders.

Indeed, when expressed ectopically, Tax-immortalized primary

human T cells and expression of Tax in rodent fibroblast cell

lines results in their oncogenic transformation [18,19]. However,

peripheral blood lymphocytes freshly isolated from ATL patients

were reported to express the viral proteins at very low levels, if

any [20–22]. In addition, nonsense or missense mutations of

the tax gene were reported in certain ATL cases [23,24]. The

lack of detectable viral gene expression in ATL cells suggests

that the viral proteins, including Tax, are not necessary at the

late stage of the disease and that a Tax-independent mecha-

nism supports the gene expression for proliferation of leukemic

cells. Studies in several ATL-derived cell lines and freshly

isolated peripheral ATL cells identified constitutive nuclear

factor-nB (NF-nB) activity as their common feature, suggest-

ing a role for NF-nB in the ATL pathogenesis [25]. In line with

this idea, inhibition of NF-nB activity by antisense oligonucleo-

tides to RelA/p65 in Tax-transformed fibroblasts led to sup-

pression of growth and impaired tumorigenicity in mice [26].
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We most recently reported an inhibitor of NF-nB, Bay

11-7082, as being effective in inducing apoptosis of

HTLV-I– transformed T-cell lines and primary ATL cells

[27]. However, the low efficiencies of gene transduction to

these cells have hindered a formal demonstration that

specific inhibition of NF-nB through expression of an InB-

related protein induces cell death.

Transcription factor NF-nB is composed of dimeric com-

plexes of the Rel/NF-nB family proteins. In mammals, these

are RelA, cRel, RelB, p50, and p52. Among them, p50 and

p52 are generated from the N-terminal portions of the pre-

cursor proteins NFKB1/p105 and NFKB2/p100, respectively.

NF-nB activity is normally regulated tightly through its cyto-

plasmic retention by physical interaction with specific inhibitor

proteins called InB. This interaction masks the nuclear local-

ization signal of NF-nB, preventing its nuclear translocation. A

variety of stimuli lead to the phosphorylation of InB proteins

on conserved two serine residues (Ser-32 and Ser-36 on

InBa; Ser-19 and Ser-23 on InBb) by the InB kinase (IKK)

complex, which is comprised of two catalytic subunits, IKK1/a

and IKK2/b, and a scaffolding protein NF-nB essential mod-

ulator (NEMO) [28–30]. This phosphorylation targets InB for

ubiquitination and subsequent proteosome-mediated degra-

dation, resulting in the release of NF-nB. NF-nB then trans-

locates to the nucleus where it binds to specific nB sites and

modulates transcription. Most of the inducible NF-nB

responses are mediated by the classical NF-nB heterodimers

p50-RelA and are of transient nature mainly due to the rapid

resynthesis of InB proteins, representing the canonical path-

way of NF-nB activation. This process requires IKK2 and

NEMO. By contrast, the noncanonical pathway of NF-nB

activation has recently been described, in which IKK1 con-

trols the phosphorylation-dependent processing of NFKB2/

p100 and generation of p52/RelB dimers [31,32]. Target

genes activated by NF-nB include factors involved in apopto-

sis resistance, cell activation, and proliferation, as well as

cytokines and chemokines involved in immune regulation

[33]. Accumulating evidence has linked deregulated NF-nB

activity to the pathogenesis of various cancers and hema-

topoietic malignancies, in which persistent NF-nB activity

results from constitutive activation of the IKK signaling

pathway or from dysfunction of InB proteins [34,35]. In

lymphoid malignancies, for example, NF-nB deregulation

may occur due to chromosomal translocations in the nfkb2

locus that result in constitutive processing of p100 [35]. It

is reported that, unlike p50, production of p52 through a

cotranslational mechanism is extremely poor, and that

p100 does not undergo inducible processing in response

to various stimuli [36,37]. Thus, p100 is expressed as its

unprocessed form in most cases and acts as an InB protein

through the C-terminal ankyrin domains. Recent reports have

demonstrated that IKK1, on activation by NIK or Tax, phos-

phorylates two specific serine residues in the C-terminus of

p100, leading to its ubiquitination and subsequent generation

of p52 [38–40]. However, it is largely unknown how ATL cells

persistently activate NF-nB in the absence of Tax.

This report first demonstrates distinct features of IKK

activation in ATL cells and T cells transformed in vitro by

HTLV-I. Second, we show that Tax-independent NF-nB

activation in ATL cells involves aberrant expression of the

processed form of NFKB2. Finally, we provide formal evi-

dence of the importance of NF-nB in the survival of ATL

cells by showing that expression of a super-repressor form

of InBa (SR-InBa) induces drastic cell death.

Materials and Methods

Cells

Jurkat [41] and Molt-4 [42] are HTLV-I–free human T-cell

lines. MT-1 [43], TL-Om1 [44], and ED40515 (�) previously

referred to as ED515-I [45] are HTLV-I– infected cell lines of

leukemic cell origin. MT-2 [46], SLB-1 [47], MT-4 [48], and

M8166 [49], a subclone of C8166 [50], are human T-cell lines

transformed in vitro with HTLV-I. These T-cell lines were

maintained in RPMI 1640 supplemented with 10% fetal

bovine serum, 100 U/ml penicillin G, and 100 mg/ml strepto-

mycin sulfate. Mouse ecotropic and amphotropic virus pack-

aging cell lines, PLAT-E [51] and PLAT-A (T. Kitamura et al.,

unpublished), were maintained in Dulbecco’s modified

Eagle’s medium supplemented with 10% fetal bovine serum,

100 U/ml penicillin G, and 100 mg/ml streptomycin sulfate.

Transfection and Luciferase (Luc) Assay

Transient transfection of suspended cells was performed

by a diethylaminoethyldextran (DEAE–dextran) procedure.

293T cells were transfected by a calcium phosphate copre-

cipitation method. The total amount of DNA transfected was

always kept constant, and each transfection was internally

controlled by cotransfection with a b-galactosidase (b-gal)

expression plasmid (pEF1-LacZ). Assays for Luc and b-gal

activities were performed 40 hours after transfection in

standard methods. Luc activity was normalized on the basis

of b-gal activity. Each experiment was repeated at least

three times, and the results are expressed as a mean ± SD.

Plasmids

ConA-Luc [52], Ign-ConA-Luc [52], EF1-lacZ (a kind gift of

Dr. Memet; Institut Pasteur, Paris, France) [53], pcDNA3-

dN97 [54], pRc-CMV-InBaSR [55], and pCMV-Neo-Bam [56]

were described previously. SRE-Luc reporter plasmid has

three copies of serum response element (SRE) cloned in pGL

vector (Promega, Madison, WI) and was kindly provided by

Dr. Courtois (Institut Pasteur). pCMV-Neo-Bam-Tax was

constructed by subcloning the tax gene from pH2Rwtax

[56] in pCMV-Neo-Bam. pMX-mEcoVR-puro was con-

structed by ligating a 2.3-kb EcoRI/BamHI fragment of a

pM5neo vector harboring the murine ecotropic viral receptor

(mEcoVR) gene [57] with a 5.5-kb EcoRI/BamHI fragment of

pMX-puro [58]. An ScaI/Bgl II DNA fragment containing

the cytomegalovirus early enhancer-promoter, U3-deleted

murine leukemia virus LTR and packaging signal was

excised from pRxhCD25iN [59], and subcloned into the

same enzymatic sites of pMX-IRES-GFP [60], generating

pMRX-IRES-GFP. Then, an EcoRI fragment of SR-InBa

from pRc-CMV-InBaSR was subcloned in pMRX-IRES-GFP,
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generating pMRX-SR-InBa-GFP. VSV-G epitope-tagged

dominant-negative IKK1 and IKK2 were generated by site-

directed mutagenesis substituting Asn for Asp145 of

pcDNA3GVSV-IKK1 [53] and pcDNA3GVSV-IKK2 [53].

The resultant plasmids were designated as pcDNA3GVSV-

IKK1DN and pcDNA3GVSV-IKK2DN, respectively.

Antibodies

Anti– InBa [61], anti– InBb [61], anti–Tax antibody (MI73)

[62], and anti–NEMO [53] sera were described previously.

Anti– IKK1 antibody (H-744), anti– IKK2 antibody (H-470),

and anti–p52 antibody (C-5) and antiactin (C-2) were pur-

chased from Santa Cruz Biotechnology (Santa Cruz, CA).

Anti– IKK1 monoclonal antibody (B78-1) and anti–NEMO

monoclonal antibody (C73-1794) were purchased from

Becton Dickinson Pharmingen (San Diego, CA). Phospho-

InBa (Ser 32) antibody (9241) was purchased from Cell

Signaling Technology (Beverly, MA).

Preparation of Cell Extracts

Cell fractionation was performed as described previously

[63]. Briefly, exponentially growing cells left untreated or

treated with 10 ng/ml tumor necrosis factor-a (TNFa) were

suspended in buffer A containing 20 mM HEPES (pH 7.8),

0.15 mM EDTA, 0.15 mM EGTA, 10 mM KCl, 0.5 mM

phenylmethylsulfonyl fluoride (PMSF), 1 mg/ml leupeptin,

and 1 mg/ml aprotinin. After cells were swollen on ice for

10 minutes, NP-40 was added to 1%. After vortex mixing for

15 seconds, the lysate was cleared of nuclei by centrifuga-

tion at 12,000 g at 4jC and the supernatant was used as

cytoplasmic extract. The pelleted nuclei were washed with

buffer B (20 mM HEPES [pH 7.8], 100 mM NaCl, 0.1 mM

EDTA, and 25% glycerol), resuspended in appropriate vol-

ume of buffer C (20 mM HEPES [pH 7.8], 400 mM

NaCl, 0.1 mM EDTA, 25% glycerol, 1 mM dithiothreitol

[DTT], 0.5 mM PMSF, 1 mg/ml leupeptin, and 1 mg/ml

aprotinin), vortexed vigorously, and agitated at 4jC for at

least 20 minutes. Debris was removed by centrifugion at

12,000 g for 2 minutes and the supernatant was used as

nuclear extract. For preparation of whole cell extract, cells

were lysed in RIPA buffer (20 mM Tris–HCl [pH 8.0], 137 mM

NaCl, 1 mM MgCl2, 1 mM CaCl2, 10% glycerol, 1% Nonidet

P-40, 0.5% deoxycholate, 0.1% sodium dodecyl sulfate

[SDS], 0.1 mM PMSF, 1 mg/ml leupeptin, and 1 mg/ml aprotinin).

Western Blot Analysis

Cytoplasmic extracts or whole cell extracts were fraction-

ated on SDS polyacrylamide gels and transferred onto

Immobilon P membranes (Millipore, Billrica, MA). Blots were

revealed with an enhanced chemiluminescence detection

system (Perkin Elmer, Boston, MA).

Electrophoretic Mobility Shift Assay (EMSA)

Two micrograms of nuclear extracts was added to 15 ml of

binding buffer (10 mM HEPES [pH 7.8], 100 mM NaCl, 1 mM

EDTA, 1 mM DTT, 2.5% glycerol, 1 mg of poly [dI–dC]) and

0.5 ng of 32P-labeled wild-type (KBF1) or mutated (KBFm) nB

probe derived from the H-2Kb promoter [64] and incubated

for 30 minutes at room temperature. Samples were run on a

polyacrylamide gel containing 2.5% glycerol in 0.5 � TBE.

Oligonucleotide containing the Octamer-binding site [65]

was used as a nonspecific competitor for NF-nB binding.

Immunoprecipitation and Kinase Assay

Cytoplasmic extracts prepared from equivalent numbers

of cells were subjected to immunoprecipitation with anti–

NEMO serum or anti– IKK1 monoclonal antibody in TNT

buffer (20 mM Tris–HCl [pH 7.5], 200 mM NaCl, 1% Triton

X-100, 0.5 mM PMSF, 1 mg/ml leupeptin, 1 mg/ml aprotinin,

100 mM Na3VO4, and 20 mM b-glycerophosphate). Immuno-

precipitates were collected on Protein G—Sepharose beads

(Pierce, Boston, MA) which were then washed three times

with TNT buffer and three times with kinase reaction buffer

(20 mM HEPES [pH 7.5], 10 mM MgCl2, 50 mM NaCl,

100 mM Na3VO4, 20 mM b-glycerophosphate, 2 mM DTT,

and 20 mM ATP). Kinase reactions were performed for

30 minutes at 30jC using 5 mCi of [g-32P]ATP and glutathi-

one-S-transferase (GST)-InBa (amino acids 1 – 72) or

GST-InBb (amino acids 1–56) as substrates. The reaction

products were separated on 12% SDS polyacrylamide gels

and revealed by autoradiography. The intensity of each

band was determined by computerized image analysis.

IKK activities of primary ATL cells were determined with

in vitro kinase assay kit (Clontech, Palo Alto, CA).

Virus Infection and Cell Sorting

PLAT-A cells were transfected with pM5neo vector har-

boring the mEcoVR or pMXmEcoVR-puro by calcium phos-

phate precipitation, and the cell-free supernatant was used

to transduce the mEcoVR gene to Jurkat, MT-1, and MT-2

cells. For infection, cells were exposed to viral supernatant

for 2 hours at 37jC in the presence of 10 mg/ml polybrene.

After G418 (0.5 mg/ml) or puromycin (1 mg/ml) selection,

Jurkat and MT-1 cell clones and a pool of MT-2 cells

expressing mEcoVR were established. Ecotropic retrovi-

ruses capable of expressing green fluorescent protein

(GFP) alone, or SR-InBa together with GFP, were prepared

in PLAT-E cells and used for infection of cells stably express-

ing mEcoVR. At 72 hours postinfection, GFP-positive cells

were sorted by FACSVantage flow cytometer (BD Bio-

sciences, San Jose, CA). To assess the expression of SR-

InBa and NF-nB DNA-binding activity in sorted cells, cells

were harvested and lysed at 80 hours postinfection for MT-2

cells and at 96 hours postinfection for Jurkat and MT-1 cells.

Nuclear morphology of sorted cells stained with 10 mM

Hoechst33342 was observed under a conforcal ultraviolet

(UV) microscope at 84 hours postinfection for MT-2 cells and

at 108 hours postinfection for the others. Cell viability was

determined by trypan blue staining.

Reverse Transcription Polymerase Chain Reaction

(RT-PCR)

Total RNA was prepared with RNeasy Kit (Qiagen,

Hilden, Germany) and the minus-strand cDNA were syn-

thesized with Superscript first-strand synthesis RT-PCR
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system (Invitrogen) using random hexamer primers. These

cDNA were used as templates to amplify a region of

HTLV-I pX using primers tax-4 (5V-ctgctctcatcccggtaagc-3V)

and tax-7474 (5V-gagccgataacggctccatcga-3V). As an in-

ternal control, expression of b-actin mRNA was examined

using primers BA3 (5V-aagagaggcatcctcaccct-3V) and

BA2 (5V-tacatggctggggtgttgaa-3V) [66]. The resulting

PCR products were analyzed by 5% polyacrylamide gel

electrophoresis.

Results

Tax-Independent NF-nB Activation in ATL Cells

Previous studies have demonstrated that either freshly

isolated leukemic cells or cell lines of leukemic cell origin

do not express detectable viral proteins including Tax, but

show constitutive NF-nB activity. Indeed, three HTLV-I–

infected cell lines of leukemic cell origin used in this study

(MT-1, ED40515 (�), and TL-Om1), but not those estab-

lished through in vitro transformation by HTLV-I (MT-2,

SLB-1, MT-4, and M8166), lack detectable expression of

the Tax protein and its mRNA (Figure 1A). EMSA

revealed elevated levels of DNA-binding activity to the

oligonucleotide-containing nB site in these ATL cells as

well as in Tax-positive HTLV-I– transformed cells, but not

in HTLV-I– free Jurkat or Molt-4 cells (Figure 1B, left

upper panel ). Nuclear extract prepared from MT-1 cells

did not give rise to a retarded band with labeled oligonu-

cleotide probe containing mutated nB site. The DNA-

binding activity in MT-1 cells was efficiently competed

with an excess amount of cold probe containing wild-type

nB site, but not with an excess amount of cold probe

containing mutated nB site or Octamer-binding site (Figure

1B, right panel ). These results demonstrate NF-nB–spe-

cific DNA-binding activity in Tax-positive and Tax-negative

HTLV-I– infected cells. Western blot analyses detected

InBa and InBb in all tested cells (Figure 1B, left lower

panels). This suggests that loss of InB expression was not

the cause of constitutive NF-nB activity in ATL cells. Very

small amounts of InBa detected in MT-4 and M8166

cells are likely due to relatively poor production and

Tax-induced degradation of this molecule. InBa phosphor-

ylated at serine 32 was detected in all Tax-positive

HTLV-I– transformed cells, although very weakly in MT-4

cells (Figure 1C). Moreover, the InBa protein phosphory-

lated at serine 32 was detected in all tested ATL cells as

well as in Jurkat cells stimulated with TNFa. This sug-

gests elevated phosphorylation activity of IKK on this

specific serine residue in ATL cells.

IKK1, But Not IKK2 or NEMO, Is Important for NF-nB

Activation in ATL Cells

Steady-state levels of individual subunits of the IKK

complex, IKK1, IKK2, and NEMO are shown in Figure 2A.

Control T cells and ATL cells expressed similar amounts

of IKK1. IKK1 expression was relatively poor in Tax-

positive HTLV-I– transformed cells as reported previously

[67]. There was no significant difference in the levels of

IKK2 expression among all the tested cells, but more

slowly migrating species of IKK2 were found in Tax-

positive HTLV-I– transformed cells. Consistent with a pre-

vious report [68], treatment of cell extracts with alkaline

phosphatase revealed that this slower migration repre-

sented phosphorylation events (data not shown). NEMO

was detected in all the examined cells at the expected

position, although its expression was relatively poor in

Tax-positive HTLV-I– transformed cells.

To investigate the role for IKK in the constitutive acti-

vation of NF-nB in ATL cells, we transfected ATL and

HTLV-I–transformed cells with a catalytically inactive form

of IKK1 or IKK2 (dnIKK1 or dnIKK2) that functions as a

dominant-negative inhibitor specific for NF-nB activation.

When expressed in 293T cells, dnIKK1 and dnIKK2 effi-

ciently suppressed Tax-induced NF-nB–dependent tran-

scription, but did not interfere with Tax-induced HTLV-I

LTR–directed transcription (Figure 2B). Besides, expres-

sion of these constructs did not suppress SRE-dependent

transcription in MT-1 or TL-Om1 cells (Figure 2B), thus

establishing the specificity of action of these molecules.

NF-nB–specific reporter gene activation was demonstrated

by cotransfecting each cell line with the vector plasmid and

either ConA-Luc devoid of nB sites or Ign-ConA-Luc (com-

pare the left two columns in each panel of Figure 2C).

These experiments revealed that the net NF-nB–depen-

dent Luc activity in each cell line was robust, so that the

Ign-ConA-Luc reporter plasmid was used in the following

experiments. Transient expression of dnIKK2 potently sup-

pressed NF-nB–dependent transcription in MT-2 (88 ± 3%)

and M8166 (47 ± 13%) cells, whereas it was virtually

ineffective in ATL cells (MT-1 and TL-Om1). This is not

due to poor expression of dnIKK2 in ATL cells because

NF-nB activation following transfection of these cells with

Tax was efficiently suppressed by cotransfection with

dnIKK2 (Figure 2D). These results also suggest that

NF-nB activity in ATL cells does not depend on Tax.

However, expression of dnIKK1 suppressed NF-nB–de-

pendent transcription most remarkably in MT-2 cells, and

moderately in ATL cells (28 ± 11% for MT-1 and 23 ± 1%

for TL-Om1 cells) to degrees similar to that for Tax-positive

M8166 cells (25 ± 9%) (Figure 2C). The suppression of

NF-nB–dependent transcription by dnIKK1 in these cells

was statistically significant (P<.05). We also tested a

dominant-negative form of NEMO (dN97) that had previ-

ously been shown to suppress TNFa-induced NF-nB acti-

vation [54]. Consistent with our genetic evidence that

NEMO is essential for Tax-mediated NF-nB activation

[53], expression of dN97 potently suppressed NF-nB ac-

tivity in Tax-positive HTLV-I– transformed cells. In contrast,

dN97 did not reduce NF-nB activity in ATL cells. Expres-

sion of a SR-InBa that cannot be phosphorylated at the

specific serine residues targeted by IKK efficiently reduced

NF-nB activity in both types of HTLV-I– infected cells. Rela-

tively higher expression of NEMO in ATL cells (Figure 2A)

is unlikely to counteract the dominant-negative effect of

dN97 because coexpression of dN97 and Tax in MT-1 and

Constitutive IKK Activation in ATL Cells Hironaka et al. 269
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Figure 1. Constitutive NF-jB activity in Tax-negative ATL cells. (A) Steady-state levels of Tax expression in equivalent numbers of cells were determined by

Western blotting using a specific antibody MI73 (upper panel). Total RNA (1 �g) prepared from the indicated cells was subjected to RT-PCR. To determine the

relative quantities of Tax and b-actin mRNA, cDNA were amplified using primers for HTLV-I pX with 35 cycles or those for b-actin with 18 cycles (lower panel).

(B) Left upper panel: Two micrograms of nuclear extracts from the indicated cell lines was analyzed by EMSA using a labeled nB site oligonucleotide derived

from the H-2Kb promoter (KBF1) as a probe. Right panel: EMSA was performed with 2 �g of nuclear extract from MT-1 cell using labeled wild-type (KBF1) or

mutated (KBFm) nB oligonucleotides. A 100-fold excess of cold probe containing wild-type or mutated nB site, or probe containing Oct-1 site was added to show

the specificity of binding. Left lower panels: Steady-state levels of InBa and InBb in equivalent numbers of cells were determined by Western blotting using specific

antibodies. (C) Using 50 �g of cytoplasmic extracts from Jurkat cells with or without 5 minutes of TNFa stimulation, Molt-4, and the indicated HTLV-I – infected cells,

phosphorylation of InBa was analyzed by Western blotting with a phospho-InBa (Ser 32)—specific antibody, and the same membrane was reprobed with an

InBa-specific antibody.
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TL-Om1 cells efficiently suppressed Tax-induced NF-nB–

dependent transcription as expected, but did not affect the

basal NF-nB activity in these cells, although we cannot

completely rule out the trivial possibility that dN97 sup-

pressed Tax expression in these cells (Figure 2D). Thus,

dN97 was functionally expressed in MT-1 and TL-Om1

cells. These transfection studies strongly suggest that

IKK1, but not IKK2 or NEMO, is important for NF-nB

Figure 2. IKK1, but not IKK2 or NEMO, is critically involved in NF-jB activation in ATL cells. (A) Steady-state levels of IKK1, IKK2, and NEMO in equivalent

numbers of cells were determined by Western blotting using specific antibodies. (B) Specific inhibition of NF-jB– dependent transcription by dominant-negative

forms of IKK. Left two panels: Approximately 2 � 10 5 293T cells were cotransfected with 0.1 �g of Igj-ConA-Luc or HTLV-I LTR-Luc, 0.1 �g of EF1-LacZ, 1 �g of

pcDNA3GVSV (vector), pcDNA3GVSV-IKK1DN (dnIKK1) or pcDNA3GVSV-IKK2DN (dnIKK2), and 0.1 �g of pCMV-Neo-Bam or pCMV-Neo-Bam-Tax. Right two

panels: Approximately 5 � 10 6 MT-1 and TL-Om1 cells were cotransfected with 10 �g of pcDNA3GVSV, pcDNA3GVSV-IKK1DN, or pcDNA3GVSV-IKK2DN

along with 5 �g of SRE-Luc and 3 �g of EF1-LacZ. Luc and �-gal activities were determined 40 hours after transfection for MT-1 and TLOm1 cells and 24 hours

after transfection for 293T cells. Luc activity was normalized on the basis of �-gal activity. Each column represents the mean ± SD of three independent

experiments. (C) Dominant-negative forms of IKK1 and IKK2 differentially suppress NF-jB activity in Tax-positive and Tax-negative HTLV-I – infected cells.

Approximately 5 � 10 6 cells were cotransfected with 5 �g of ConA-Luc, 3 �g of EF1-LacZ, and 10 �g of pcDNA3GVSV (open column), or with 5 �g of Igj-ConA-

Luc, 3 �g of EF1-LacZ, and 10 �g of pcDNA3GVSV, pcDNA3GVSV-IKK1DN, pcDNA3GVSV-IKK2DN, pcDNA3-dN97 (dN97), or pRc-CMV-IjBaSR (IjBaSR)

(filled columns). Relative Luc activity normalized to �-gal activity is presented as a percentage of the value obtained with Igj-ConA-Luc and pcDNA3GVSV. Data

are expressed as mean ± SD of three independent experiments. *P<.05 versus vector control. (D) Approximately 5 � 106 MT-1 and TL-Om1 cells were

cotransfected with 5 �g of Ign-ConA-Luc, 3 �g of EF1-LacZ, and 10 �g of pcDNA3GVSV, pcDNA3GVSV-IKK2DN, or pcDNA3-dN97 together with increasing

amounts of pCMV-Neo-Bam-Tax. The total amount of DNA transfected was equalized with the pCMV-Neo-Bam vector. The panels show the relative Luc activity

over the activity obtained with the combination of pcDNA3GVSV and pCMV-Neo-Bam vectors. Each column represents the mean ± SD of three independent

experiments.
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activation in ATL cells, which contrasts with Tax-positive

HTLV-I– transformed cells in which IKK1, IKK2, and NEMO

play important roles for NF-nB activation.

Constitutive IKK Activity in ATL Cells

Recent studies have demonstrated two NF-nB activation

pathways: one is NEMO-dependent, triggered by cytokines

such as TNFa and IL-1b, and called the canonical pathway;

the other is NEMO-independent and IKK1-dependent, trig-

gered by B-cell activation factor (BAFF), lymphotoxinb (LTb),

CD40, or TWEAK, and called the noncanonical pathway

[69–73]. To further study the contribution of IKK1 to NF-nB

activity in ATL cells, we determined IKK activity following

immunoprecipitation by IKK1-specific antibody (Figure 3).

Cell lysates prepared from equivalent numbers of cells were

subjected to immunoprecipitation. One portion of the immu-

noprecipitates was used in in vitro phosphorylation assays

with GST-InBa or GST-InBb as substrates, and the remain-

der was subjected to immunoblotting for detection of immu-

noprecipitated IKK1. IKK1 was efficiently immunoprecipitated

and the amounts of immunoprecipitated IKK1 were propor-

tional to the expression levels of these molecules in each cell

line (Figures 2A and 3). Thus, the band intensities of phos-

phorylated GST-InBs are expected to represent IKK activity

per cell. No phosphorylating activity on mutant GST-InBa

(S32A and S36A) or GST-InB (S19A and S23A) was ob-

served (data not shown). The results in Figure 3 indicated

that IKK activity per cell was increased in both ATL cells

and HTLV-I– transformed cells, compared with those in

HTLV-I– free control T cells.

Aberrant Expression of NFKB2 p52 in ATL Cells

The recently identified noncanonical pathway of NF-nB

activation involves the processing of NFKB2 p100 and

the generation of p52. Although expression of p100 is

controlled by NF-nB activity [74], the processing of p100 is

a limited event that takes place independently of NEMO

[36,37,40,73]. As this process is triggered by phosphoryla-

tion on the specific serine residues of p100 by IKK1, and not

by IKK2 [39,40], we examined the generation of p52 in ATL

cells (Figure 4). Consistent with a prior report that demon-

strated Tax- and NEMO-dependent recruitment of IKK1 to

p100, which resulted in the proteolytic generation of p52 [40],

Western blot analysis of whole cell extracts prepared from

equivalent numbers of cells detected p100 and p52 strongly

expressed in Tax-positive HTLV-I– transformed cells. Al-

though the control study (bottom panel) showed a lower

amount of actin for Jurkat, which is smaller in size than the

other cell lines, a longer exposure did not reveal significant

p52 generation in this cell line. A polypeptide migrating

slightly faster than p100 was recognized in MT-4 cells as

reported previously [75], but its detailed character is not yet

fully investigated. Aberrant expression of p100 and p52 was

observed also in ATL cells, but not in HTLV-I– free Jurkat or

Molt-4 cells. TL-Om1 cells appear to express polypeptides

larger than p52, in addition to the full-length p100. Because

the anti–p52 antibody used in this experiment was raised

against the N-terminal 447 amino acids, they could be

C-terminally truncated p100 products that are processed in

a signal-independent manner, as was reported for Hut78

cells [35]. The aberrant p52 expression indicates that the

noncanonical NF-nB activation pathway operates in Tax-

negative ATL cells.

Specific Inhibition of NF-nB Activity Induces Cell Death in

ATL Cells

Finally, we show that constitutive NF-nB activity is essen-

tial for survival or growth of ATL and HTLV-I–transformed

T cells. This point has not been addressed by use of a

specific NF-nB inhibitor InBa, although previous reports

suggested the importance of this transcription factor for

survival of Tax-expressing T cells by use of drugs that

suppressed NF-nB activity [27]. A SR-InBa that cannot be

phosphorylated at the specific serine residues targeted by

IKK was expressed in HTLV-I– free Jurkat, ATL-derived

MT-1, or HTLV-I–transformed MT-2 cells through retroviral

gene transduction. Infection of Jurkat, MT-1, or MT-2 cells

stably expressing the mEcoVR with retrovirus capable of

expressing GFP alone, or SR-InBa in combination with GFP,

resulted in GFP expression in approximately 30% of cells.

GFP-positive populations were sorted 72 hours after infec-

tion to selectively analyze infected cells. More than 80% of

sorted cells were positive in GFP expression for each cell

line. MT-1 and MT-2 cells expressing SR-InBa were found to

start dying 78 hours after infection (Figure 5A). In contrast,

MT-1 and MT-2 cells expressing GFP alone remained viable

and increased in number. However, Jurkat cells remained

intact following SR-InBa expression, and increased expo-

nentially in number over the time studied (Figure 5A and data

not shown). Because of rapid loss of MT-2 cell viability,

preparation of MT-2 cell extracts and observation of MT-2

cells under UV microscope were done at an earlier time point

than Jurkat and MT-1 cells. Figure 5B shows reduced NF-nB

DNA-binding activity in SR-InBa– transduced MT-1 and

MT-2 cells, which correlated well with the increased

steady-state levels of InBa. Although NF-nB DNA-binding

activity appears to be reduced by SR-InBa expression in MT-

2 cells to a lesser degree than in MT-1 cells, the viability of

MT-2 cells was more rapidly and profoundly lost by SR-InBa

expression than that of MT-1 cells. The weak DNA-binding

activity might remain in MT-2 cells partly because cells were

harvested earlier than MT-1 cells by 16 hours. It is possible

that MT-2 cells survive and proliferate, fully relying on Tax-

induced NF-nB activity, and hence are more sensitive to NF-

nB inhibition than Tax-negative MT-1 cells. However, MT-1

cells may have accumulated a variety of genetic and epige-

netic changes supporting their survival and proliferation in

the absence of Tax during the process of leukemogenesis,

and could thereby be less sensitive to NF-nB inhibition. The

nuclear morphology of the infected cells was examined by

microscopic observation after staining with Hoechst33342

(Figure 5C). Nuclear condensation, a hallmark of apoptosis,

was observed in MT-1 and MT-2 cells expressing SR-InBa,

but not in those expressing GFP alone or in Jurkat cells.

These results clearly indicate that both ATL and HTLV-I–

transformed T cells depend on elevated NF-nB activity for
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their survival, and thus implicate the importance of under-

standing the distinct mechanism of NF-nB activation in

ATL cells.

Discussion

Several questions have remained to be solved about the

NF-nB activity in ATL cell: Is NF-nB activation required for

the development of ATL? How is NF-nB activated constitu-

tively in the absence of Tax? Why is Tax expression often

undetectable in ATL cells? We have demonstrated, through

specific inhibition of NF-nB by SR-InBa, that constitutive

NF-nB activity is essential for the survival of ATL and

HTLV-I–transformed cells (Figure 5). We have shown, for

the first time, constitutive IKK activity in ATL cells that do not

express detectable levels of HTLV-I gene products including

Tax. Transfection studies suggest that this IKK activation is

mechanistically different from that induced by Tax. We have

also demonstrated aberrant expression of p52 in ATL cells in

the absence of Tax, indicating that the recently described

noncanonical NF-nB activation pathway operates in ATL

cells. These results suggest that a Tax-independent cellular

mechanism(s) rather than a tiny amount of Tax, if any, is

responsible for the modification of InB proteins and consti-

tutive activation of NF-nB in ATL cells, which are eventually

similar to those caused by Tax.

Constitutive NF-nB Activity Is Required for Survival of

ATL Cells

We have extended our previous report that pharmacolog-

ical inhibition of NF-nB induces apoptosis of HTLV-I– trans-

formed cells and primary ATL cells [27] to formally

demonstrate an essential role of NF-nB in their survival, by

using SR-InBa that specifically inhibits NF-nB. Pervious

transfection studies revealed that InBa was unable to inhibit

transcriptional activity of p52/RelB dimer [76,77]. However,

regulation of endogenous p52/RelB complexes is different

from that of ectopically expressed p52/RelB in that inducible

expression of p100 and RelB precedes the formation of p52/

RelB complex. Based on our and other researchers’ results,

we envisage that phosphorylation of InBa would be an

important early step to induce the expression of p100 and

RelB, which play central roles in the noncanonical pathway.

Several cytokine signals (LTb, CD40, and TWEAK) that

activate this pathway also induce phosphorylation of InBa

and nuclear translocation of p50/RelA preceding the gener-

ation of p50/RelB and p52/RelB dimers [71–73,78–80]. In

fact, we showed in Figure 1C phosphorylated InBa in the

cytoplasm of ATL-derived cells whose NF-nB activity is

refractory to dominant-negative forms of IKK2 and NEMO,

but sensitive to SR-InBa (Figure 2C ), suggesting that these

cells have an IKK2- and NEMO-independent phosphorylat-

ing activity on InBa. SR-InBa is expected to block this step

and shut off the NF-nB–induced production of p100 and

RelB [74,81].

Finally, our supershift study revealed p50, p52, RelB, and

a small amount of RelA in the NF-nB DNA-binding com-

plexes of MT-1 cells (data not shown), which were

all abolished by expression of SR-InBa (Figure 5B ). The

p50/RelB dimer was previously shown to be sensitive to

inhibition by InBa in a transfection study [77]. SR-InBa may

inhibit p52/RelB and p50/RelB dimers at different steps and

eventually ablate the entire NF-nB activity in MT-1 cells.

Thus, our results suggest that loss of active NF-nB compo-

nents including p52/RelB reduces the viability of ATL-derived

cells. This promises well for the efficacy of an anti–NF-nB

therapy against ATL; however, general inhibition of NF-nB by

SR-InBa, for instance, will not be appropriate for clinical use,

unless SR-InBa is targeted only to ATL cells. An NF-nB

inhibitor specialized to ATL would be more useful. In this

regard, Tax-mediated NF-nB activation attracted much at-

tention, and efforts to elucidate its mechanism indeed led to

the discovery of NEMO [53]. Nevertheless, because Tax

expression is not detectable in primary leukemic cells or cell

lines of leukemic cell origin, understanding the molecular

mechanism of Tax-independent NF-nB activation in ATL

cells rather than that of the Tax-dependent one should

contribute more to establishing the molecular basis for the

treatment of ATL.

Figure 3. Tax-independent IKK activation in ATL cells. Cytoplasmic extracts

prepared from equivalent numbers of cells were immunoprecipitated with an

IKK1-specific monoclonal antibody and subjected to in vitro kinase assay

using GST-InBa and GST-InBb as substrates, or to immunoblotting for

detection of IKK1 and IKK2 in the precipitates with a mixture of IKK1- and

IKK2-specific polyclonal antibodies. The experiments were carried out three

times and the results were essentially reproducible.

Figure 4. Aberrant p52 expression in ATL cells. Whole cell extracts prepared

from equivalent numbers of the indicated cells were analyzed by Western

blotting using anti –p52 monoclonal antibody (C-5), and the same membrane

was reprobed with an anti – actin antibody. Nonspecific bands are indicated

as NS.

Constitutive IKK Activation in ATL Cells Hironaka et al. 273

Neoplasia . Vol. 6, No. 3, 2004



Tax-Independent IKK Activation in ATL Cells

We have presented functional evidence of distinct IKK

activation in Tax-positive and ATL cells. Transfection studies

in Tax-positive HTLV-I– transformed cells revealed that

dnIKK1, dnIKK2, and dN97 NEMO efficiently suppressed

NF-nB–dependent transcription, suggesting important roles

of these molecules in Tax-mediated NF-nB activation. In

contrast, in Tax-negative ATL cells, dnIKK2 and dN97

NEMO were unable to suppress NF-nB–dependent tran-

scription, whereas dnIKK1 partially inhibited it (Figure 2C).

Figure 5. Specific inhibition of NF-jB activity induces cell death in ATL cells. (A) Jurkat, MT-1, and MT-2 cells stably expressing mEcoVR were infected with

retroviruses capable of expressing control GFP protein alone (GFP) or SR-IjBa together with GFP (SR-IjBa-GFP). GFP-positive populations were sorted and

stained with trypan blue to assess cell viability. The results shown are representative of three independent experiments. (B) Cytoplasmic and nuclear extracts were

prepared from equivalent numbers of sorted GFP-positive cells (Jurkat and MT-1: 2 � 105 cells, MT-2: 105 cells). Steady-state levels of IjBa in the cytoplasm were

determined at 80 hours postinfection for MT-2 and 96 hours postinfection for Jurkat and MT-1 cells by immunoblotting using IjBa-specific antibody (upper panels).

NF-jB DNA-binding activity was assessed by EMSA (lower panels). MT-2 cells were harvested at an earlier time point because of their rapid cell death. (C) Sorted

cells were stained with Hoechst 33342 at 84 hours postinfection for MT-2 cell and at 108 hours postinfection for Jurkat and MT-1 cells, and photographed under

three different conditions (phase contrast, UV –GFP, and UV – Hoechst 33342) with a confocal UV microscope. The experiments were carried out three times and

the results were essentially reproducible.
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We also tested if simultaneous expression of dnIKK1 and

dnIKK2 can suppress NF-nB activity in MT-1 and TL-Om1

cells. Transient transfection with 5 mg each of dnIKK1 and

dnIKK2 constructs did not significantly reduce the reporter

gene activity compared to that with 5 mg of vector and dnIKK1

constructs or that with 10 mg of dnIKK1 construct (data not

shown). These observations suggest an important role for

IKK1, but cannot exclude a possibility that NF-nB activity in

these cells is partly IKK-independent. The role of IKK1 in

NF-nB activation in ATL cells is further supported by the

in vitro kinase assay results. IKK activities pulled down from

ATL cells with anti– IKK1 antibody are comparable to those

from Tax-positive HTLV-I– transformed cells except for

M8166 cells. Moreover, consistent with a prior report show-

ing that NF-nB activation by Tax involved phosphorylation of

IKK2 and NEMO, we detected IKK2 phosphorylation, but not

IKK1 phosphorylation, in Tax-positive HTLV-I– transformed

cells, whereas IKK2 phosphorylation was not detected in

ATL cells (data not shown). Collectively, these observations

strongly suggest distinct IKK activation in ATL cells that are

Tax- and NEMO-independent.

Despite the observed difference in IKK activation, InBa

and p100 were found modified similarly regardless of Tax

expression, albeit to lesser extents in the absence of Tax.

These observations raise a possibility that the functions of

Tax in the IKK complex are, at least in part, achieved by a

cellular mechanism in Tax-negative ATL cells. Xiao et al. [40]

reported previously Tax-dependent recruitment of IKK1 to

p100 that required NEMO and resulted in the generation of

p52 following phosphorylation and subsequent processing of

p100. Given the poor cotranslational processing of p100

[36,37], enhanced activation of IKK1-associated kinase ac-

tivity, and generation of p52 in ATL cells, it is reasonable to

postulate that the activated IKK1 in ATL cells phosphorylates

p100 and triggers its processing in a Tax-independent man-

ner. The features of IKK activation and modification of InB

proteins in ATL cells are most compatible to the recently

described noncanonical pathway of NF-nB activation in-

duced by BAFF, LTb, CD40, or TWEAK that involves the

phosphorylation-dependent generation of p52 in an IKK1-

dependent, but NEMO-independent, manner [69–73,82].

Loss of the Viral Gene Expression During ATL

Leukemogenesis

Based on the observation that Tax-independent constitu-

tive NF-nB activity in cells of leukemic origin is essential for

their survival, we hypothesize that these cells acquired this

phenotype under the host’s immunological surveillance. Tax

is known to be a major target of cytotoxic T lymphocyte (CTL)

immunity [21,83]; however, this CTL activity is poorly detect-

able in ATL patients [84–86]. In contrast, CTL activity

against Tax is relatively high in HAM patients where HTLV-

I– infected T cells express substantial levels of Tax. Tax is

supposed to promote the proliferation of HTLV-I– infected

T cells by altering the host gene expression in the early

stages of leukemogenesis and also to enhance cellular gene

mutations either by suppressing the expression of a DNA

repair enzyme b-polymerase or by targeting key regulators

of G1/S and M progression such as p16/INK4a, cyclin D1,

D2, cyclin D3-cdk, and the mitotic spindle checkpoint appa-

ratus [13–15,87–89]. However, expression of Tax should

also activate CTL, which in turn would target Tax-positive

cells for killing. This process may promote selective out-

growth of cells that acquired Tax-independent growth advan-

tages such as constitutive NF-nB activity through alterations

of host gene expression. This hypothesis can explain the

long latency until the onset of diseases, relatively low inci-

dence of developing ATL, monoclonal or oligoclonal growth

of leukemic cells, and poor Tax-specific CTL activity in ATL

patients. The constitutive NF-nB activity in a CD4+ T-cell

malignancy, cutaneous T-cell lymphoma (CTCL), would

provide another piece of evidence that supports this hypoth-

esis. CTCL has clinical and histopathological features quite

similar to those of ATL. In fact, the only finding helpful for

distinguishing ATL from CTCL is HTLV-I infection. A CTCL-

derived cell line, Hut78, was reported to exhibit constitutive

NF-nB activity that is essential for its survival, deregulated

processing of p100, and aberrant expression of p52

[38,75,90]. Moreover, a rearranged NFKB2 gene product

found in a CTCL patient that lacks portions of the ankiryn

domain and IKK1 phosphorylation site localized in the nu-

cleus [91]. Thus, the constitutive NF-nB activity associated

with aberrant p52 expression may represent a common

basis of these mature CD4+ T-cell malignancies.

Noncanonical NF-nB Activation and Tumorigenesis

The relatively weaker expression of p100 in ATL cells

compared to that seen in Tax-positive HTLV-I– transformed

cells could be ascribed to the absence of strong activation of

the canonical pathway, which is known to enhance p100 and

RelB expression [74,81]. Nonetheless, the elevated expres-

sion of p52 in ATL cells implicates that the processing of

p100 is an important event in the process of leukemogene-

sis. Interestingly, mice lacking the C-terminal half of p100,

while still expressing p52, develop gastric and lymphoid

hyperplasia, but not cancer [92]. In human lymphoid malig-

nancies, a variety of rearrangement or deletion in the nfkb2

locus can be found. Mutations cluster within the 3V ankyrin-

encoding domain of the nfkb2 gene and lead to production of

abnormal proteins, which results in constitutive p52 produc-

tion and DNA-binding activity [34,35]. Deregulated produc-

tion of p52 has also been reported in breast cancer cells and

CTCL-derived cell lines [38,75,93]. These cancer cells may

require an activity that induces the processing of p100 and

disrupts its potent InB function to keep the high NF-nB

activity. The processing of p100 is often accompanied by

nuclear translocation of RelB, whose expression is upregu-

lated by NF-nB because p100, and not InBa, specifically

retains RelB in the cytoplasm [76]. Thus, not only the

disruption of p100’s InB function, but also modifications of

transcription by p52-containing or RelB-containing dimers

could contribute to oncogenesis. However, these events do

not appear to be sufficient for cancer development

because none of the isolated p100 mutants or p52 can

immediately induce cancer. The multistep development of

ATL is therefore likely to involve yet unidentified molecular
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events besides the constitutive NF-nB activation, but eluci-

dation of the mechanism of the Tax-independent IKK acti-

vation in ATL cells will facilitate the understanding of the

pathogenesis of ATL and should provide a rationale for

establishing treatment of this incurable leukemia.
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